Dirac generating operators and Manin triples

نویسنده

  • Zhuo Chen
چکیده

Given a pair of Lie algebroid structures on a vector bundle A (over M) and its dual A∗, and provided the A∗-module L = (∧A ⊗ ∧T ∗M) 1 2 exists, there exists a canonically defined differential operator D̆ on Γ(∧A ⊗ L ). We prove that the pair (A,A∗) constitutes a Lie bialgebroid if, and only if, D̆ is a Dirac generating operator as defined by Alekseev & Xu [1].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Triples of Real Simple Lie Algebras

The article is devoted to the problem of classification of Manin triples up to weak and gauge equivalence. The case of complex simple Lie algebras can be obtained by papers of A.Belavin, V.Drinfel'd, M.Semenov-Tian-Shanskii. Studing the action of conjugaton on complex Manin triples, we get the list of real doubles. There exists three types of the doubles. We classify all ad-invariant forms on t...

متن کامل

Quasi-Dirac Operators on the Sphere

We investigate examples of quasi-spectral triples over two-dimensional commutative sphere, which are obtained by modifying the order-one condition. We find quasi-Dirac operators and calculate the index paring with a representant of K-theory class to prove that the quasispectral triples are mutually inequivalent. MSC 2000: 58B34, 46L87, 34L40

متن کامل

Quasi-Dirac Operators and Quasi-Fermions

We investigate examples of quasi-spectral triples over two-dimensional commutative sphere, which are obtained by modifying the order-one condition. We find equivariant quasi-Dirac operators and prove that they are in a topologically distinct sector than the standard Dirac operator. MSC 2000: 58B34, 46L87, 34L40

متن کامل

Manin Triples of Real Simple Lie Algebras. Part 2

We complete the study of Manin triples of real simple Lie algebras. In the Part 2 of the article we classify the Manin triples (g(R), W, g(R) ⊕ g(R)) (case 2 of the doubles) up to weak and gauge equivalence. First we recall the main definitions of the Part 1. Definition 1. Let g 1 , g 2 , d be Lie algebras over a field K and let Q be a symmetric nondegenerate bilinear form on d. A triple (g 1 ,...

متن کامل

Twisted Dirac Operators over Quantum Spheres

We construct new families of spectral triples over quantum spheres, with a particular attention focused on the standard Podleś quantum sphere and twisted Dirac operators.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008